Температура плавления и характеристики алмаза

Температура плавления алмаза — это одна из характеристик драгоценности, которая до сих пор не изучена в полном объеме. Камень имеет уникальные свойства, которые ценятся не только в ювелирном деле, но и в промышленности. И температура плавления не стала исключением из правил.

Некоторые минералоги и исследователи объясняют такие странные характеристики алмаза его космическим происхождением. То есть, предполагают, что материал попал на планету после падения большого количества метеоритов и остался в недрах земли.

Базовые характеристики алмаза

В качестве примера можно привести то, что алмаз обладает наивысшей твердостью по шкале Мооса, при этом камень хрупкий. Вещество является диэлектриком и изолятором. Алмаз обладает самой прочной упаковкой, то есть кристаллической решеткой. Структура состоит из одного атома углерода, который в природе является горючим и имеет аллотропные модификации. Самой известной формой элемента, помимо алмаза, является графит.

Ученые неоднократно проводили опыты, а также эксперименты, которые были связаны с модификациями углерода. В частности, во время плавления хотели добиться и посмотреть, не будет ли перехода алмаза в графит и наоборот. Одними из последних исследователей, которые занимались вопросом плавления, была группа физиков из университета в Калифорнии. Опыт проводился в 2010 году, и целью ученых был перевод алмаза в жидкое состояние.

камень алмаз

Температура плавления алмаза

Сложность заключалась в том, что с повышением температуры вещество превращается в графит. Поэтому, вместе с температурой, приходилось повышать и давление. Интересно, что в обратную сторону процесс провести нельзя: графит не превращается в алмаз без затравки даже под действием высоких температур.

Показатель плавления вещества

Если верить уже проведенным исследованиям, то показатели плавления алмаза находятся на таком уровне:

С доступом кислорода вещество сгорает при температуре 850-1000 градусов Цельсия. Алмаз горит синим пламенем, после чего исчезает бесследно, превратившись в углекислый газ. В этом убедились ученые из Италии Тарджони и Аверани на собственном опыте. Еще в 1694 году они решили провести эксперимент и соединить два мелких бриллианта в один крупный. Несколько попыток закончилось сгоранием драгоценностей.

  • Плавного расплавления добиться очень сложно. Для этого необходимо проводить эксперименты без доступа кислорода и в устройствах с переменой давления.
  • Без доступа кислорода горение алмаза происходит при повышении показателей температуры до 1800-2000 градусов Цельсия, и вещество превращается в графит.
  • Плавление происходит на уровне 3700-4000 градусов Цельсия, но достичь таких температур в лабораториях получается с большим трудом.

Кривую плавления алмаза построить тяжело, она получается аномальной, учитывается и наличие кислорода в процессе. Сходства и стандартов, как у других веществ, нет. Поэтому показатель неточный и может измениться после очередных экспериментов.

Ученые взяли алмаз небольшого веса, и плавление происходило под действием ударной волны. Волну создавали наносекундные лазерные импульсы. Жидкий алмаз, то есть расплавленный материал, действительно был получен в ходе эксперимента при давлении в 40 миллионов атмосфер.

Но при постепенном повышении давления и температуры до 50 000 по Кельвину на жидкой поверхности алмаза стали появляться твердые частицы. При этом неожиданным открытием стало то, что частицы не тонут в жидкости, а плавают, как кубики льда, напоминая айсберги. Жидкость не меняется и не кипит в процессе дальнейшего нагревания. При понижении давления и сохранении температуры на том же уровне частицы становились больше и склеивались в одно целое. В дальнейшем алмаз постепенно переходил в твердое состояние. Несколько «айсбергов» склеиваются между собой, жидкость не испаряется в процессе.

В обычных условиях на земле такого состояния углерода добиться нельзя. Но исследователи думают, что в недрах таких планет, как Нептун и Уран, углерод содержится именно в таком кипящем состоянии. Там есть целые океаны кипящих алмазов.

Подтверждения или материалов на эту тему нет, но большинство ученых согласно с гипотезой. А также это предположение объясняет странное действие магнитных полей планет. Эти небесные тела являются единственными в Солнечной системе, у кого нет четких географических полюсов, они все время перемещаются. Тщательнее исследовать планеты не получается, поскольку моделирование ситуации на земле или отправление экспедиций к этим планетам — дорогостоящий и трудоемкий процесс.

А вот еще один эксперимент был посвящен превращению алмаза в углекислый газ. Для этого ученые воздействовали на алмаз мощными ультрафиолетовыми лучами, после чего в камне образовывались углубления в месте воздействия. Камень выгорает и переходит в газообразное агрегатное состояние.

Производство лазеров на основе алмазов — изобретение, не имеющее смысла. Такие приборы ломаются и становятся непригодными к использованию. Но, конечно, не стоит переживать о том, можно ли носить камень летом под действием солнца — обычный ультрафиолет не повредит алмазу. Чтоб удалить один микрограмм минерала, нужно выдерживать камень под ультрафиолетом почти 10 миллиардов лет.

Интересен и тот феномен, что во время пайки изделий с бриллиантами в ювелирных магазинах, камень поддается нагреванию и обработке. Часто ювелиры паяют изделия с бриллиантами. Но такие действия могут закончиться помутнением камня, и владельцу придется отдавать его на переогранку. Опасно находиться над горелкой бриллиантам с микротрещинами или другими повреждениями — хрупкий камень рассыплется на части.

Каждый эксперимент внес свой вклад в исследование вещества под названием алмаз. К сожалению, до конца феномен плавления алмаза объяснить не удается. Зато новым ученым есть к чему стремиться, поле для исследований готово и человечество ждет открытий. Характеристика алмаза пригодится в производстве и в искусственном выращивании вещества. А также она поможет в исследовании космоса.

Рекомендуем другие статьи